DAGVATTENHANDBOK

Antagen av VA-planens styrgrupp 2018-11-22
Förord och bakgrund

Dagvattenhantering är så mycket mer än att leda bort regnvatten från hårdgjorda ytor. Hållbar dagvattenhantering innebär väl dimensionerade system som är anpassade för kommande klimatförändringar samtidigt som den negativa påverkan på recipienten minimeras gällande både kvalitet och flöde.

För att åstadkomma en hållbar dagvattenhantering krävs en bra planering för såväl nya utbyggnadsområden som för befintliga dagvattensystem för att säkra upp framtida krav och riktlinjer

Dagvattenfrågor involverar flera olika förvaltningar inom kommunen och det finns en stor fördel att ha en gemensam handbok som reglerar vem som gör vad och vem som ansvarar för vad.

Genom att tydliggöra roller och ansvar så kvalitetssäkrar vi både planeringsprocessen och hanteringen av befintliga system och anläggningar för dagvatten.

Dagvattenhandboken är en del av kommunens VA-plan och fastställs i VA-planens styrgrupp.

Dagvattenhandboken riktar sig till alla inom Växjö kommunkonzern som jobbar med dagvattenfrågor och är ett stöd i det dagliga arbetet.
Innehållsförteckning

Förord och bakgrund .. 1
Innehållsförteckning .. 2
Inledning .. 4
 Vad är dagvatten .. 4
 Syfte och mål .. 4
Antagna policies och planer .. 5
 Dagvatten i VA-policy .. 5
 Dagvatten i gällande Översiktsplan ... 5
Dagvattenhantering ... 6
 Övergripande .. 6
 Förtätning och planändring .. 6
 Nybyggnation (tidigare obebyggd mark) .. 7
 Befintlig bebyggelse .. 7
 Dagvattentaxa .. 7
Dagvatten i Plan- och exploateringsprocessen ... 8
 Översiktsplan, planprogram .. 8
 Detaljplan .. 8
 Projektering .. 8
 Markanvisning och avtal ... 8
 Bygglov ... 8
Klimatanpassning och ansvarsfördelning .. 9
 Ansvarsfördelning vid ny bebyggelse .. 9
 Ansvarsfördelning vid befintlig bebyggelse .. 10
 Ansvarsfördelning inom kommunen ... 10
 Planeringsförutsättningar .. 10
 Förhöjd beredskap .. 11
 Krissituation .. 11
Dagvattensystem ... 12
 Dimensioneringskriterier övergripande ... 12
 Dimensioneringskriterier dagvattenanläggningar ... 12
 Anläggning för rening av dagvatten .. 12
Bild 6: Skiss över fördelningsanordningen vid översilningsytor .. 14
 Anläggning för utjämning av dagvatten .. 16
 Drift och underhåll av dagvattenanläggningar och ledningsnät .. 18
Dimensionerande regn

Klassificering av dagvatten

Föroreningsinnehåll i dagvatten och reningsmetod

Riktvärden

Bilaga 1

Ordlista - begrepp som behöver förklaras

Bilaga 2

Ansvarsfördelning och checklistor i plan- och exploateringsprocessen

Bilaga 3

Riktvärden

Bilaga 4

Klassificering av recipienter

Övergripande

Riktlinjer vid bedömning av recipienter

Bilaga 5

Hantering av dag- och dräneringsvatten på tomtmark i Växjö

Att ta hand om dräneringsvatten

Att ta hand om dagvatten

Ett rättkopplat hus

Hantering av dag- och dräneringsvatten när dagvattenservis saknas

Hantering av dag- och dräneringsvatten på tomtmark i Växjö

Att ta hand om dräneringsvatten

Att ta hand om dagvatten

Ett rättkopplat hus

Hantering av dag- och dräneringsvatten när dagvattenservis saknas
Inledning

Vad är dagvatten

Dagvatten är vatten som tillfälligt rinner på markytan. Oftast menar man vatten från hårdgjorda ytor så som hustak, vägar, parkeringsplatser och stenläggningar. Det mesta dagvattnet är regn eller smältvatten från snö och is.

Hanteringen av dagvatten är dels en kapacitetsfråga då den nederbörd som faller ska ledas bort men också en kvalitetsfråga då den nederbörd som faller tvättar rent de ytor som den faller på vilket innebär att dagvattnet kan innehålla höga halter av föroreningar. Vi behöver därför ett dagvattensystem som både kan hantera stora flöden men också minska föroreningsbelastningen till recipienterna.

Syfte och mål

Det är många som berörs av dagvattenfrågan i stadsplaneringen, som till exempel väghållare, planerare, bygglovshandläggare, VA-ansvariga men också miljö- och hälsoskyddsnämnden samt fastighetsägare. Dagvatten ska hanteras både till vardags och vid skyfallssituationer vilket ställer stora krav både på dagvattensystem och stadsplanering.

För att bygga ett hållbart samhälle ur dagvattensynpunkt är det därför viktigt att sprida kompetens om dagvatten och hanteringen av detta samt tydliggöra när och vem som ansvarar för vad.

Syftet med denna handbok är att få en kommungemensam syn på dagvatten och hanteringen av detta så att vi på ett effektivt sätt säkrar upp en hållbar hantering av dagvatten.

I bilaga 1 finns en ordlista som förklarar förekommande dagvattenbegrepp i handboken.

Bild 1: Dagvattenanläggning vid Östra Lugnet med syfte att rena dagvattnet innan det når recipienten.
Antagna policys och planer

Dagvatten i VA-policy

- Dagvattenhanteringen ska vara långsiktigt hållbar både ur flödes- och föroreningssynpunkt.
- Dagvattensystem ska utformas med hänsyn till platsens förutsättningar, dagvattnets föroreninggrad, naturliga vattenströmmar och recipientens känslighet.
- Dagvatten bör fördrojas eller omhändertas så nära källan som möjligt. Omhändertagandet får dock inte ske på sådant sätt att grundvattnet förövernas eller byggnader och anläggningar riskerar att skadas.
- Relevant hänsyn ska tas till betydelsen av naturmarkarvinnning och grundvattenflöde för de recipienter som påverkas av bortledande vatten.
- I översiktsplanering och/eller i detaljplaner ska grönområden och gröna stråk för öppen hantering och infiltration av dagvatten avsättas i tillräcklig grad och prioriteras framför underjordisk dagvattenhantering.
- Vid detaljplanering ska kommunen vid behov ställa krav på dagvattenhanteringen.
- I samband med byggnadshantering ska kommunen verka för att fastighetsägare i redan exploaterade områden med dagvattenproblematik förbättrar dagvattenhanteringen.

Dagvatten i gällande Översiktsplan
I översiktsplanen (2012) belyses dagvattenfrågan främst genom de klimatförändringar som vi idag ser kan leda till extremp våder med riklig nederbörd eller snabb avsmältning som höjer vattennivån i våra sjöar och vattendrag. Eftersom bebyggelsen står kvar under många hundra år gäller det att ha en god marginal vid höjdsättningen och utformningen så att inte fastigheten skadas av översvämningar från vattendrag och skyfall.

Riktlinjer för översvämning vid sjöar och vattendrag:
- Vi ska inte lägga bebyggelse inom områden som hotas av högsta dimensionerande flöde. Skulle vi trots allt vilja prova bebyggelse inom områdena ska man göra en särskild utredning.
- Räppe kanals östra strand ska kunna överspelas på en sträcka av 200 meter för att Helgasjöns och Toftasjöns högsta dimensionerande flöde ska gälla.

Risk för översvämningar i samband med ett överbelastat ledningsnät finns framförallt utmed lågstråken som går i nordsydlig riktning t ex Arabygatan, Liedbergsgatan och Linnégatan, men även andra områden är riskområden. Med tanke på vad det framtida klimatet kan orsaka, är risken stor att kapaciteten i dagens befintliga ledningsnät inte räcker till. Åtgärder för att hantera dagvattenproblematiken krävs.

Riktlinjer för översvämning på ledningsnätet:
- All exploatering ska ske på sådant sätt att man inte förvärvar risken för översvämning, varken inom riskområdena eller så att nya riskområden uppkommer.
- Inom riskområdena och uppströms i avrinningsområdet ska vi minska översvämningsrisken genom lokal fördjupning, infiltrationsytor etc.

Vi bör ta speciell hänsyn till hanteringen av dagvatten i ett tidigt skede i den fortsatta planeringen för att förhindra påverkan på sjöarna och en försämring av vattenkvaliteten.
Dagvattenhantering

Övergripande
Ett dagvattensystem kan bestå av ledningar, diken, utjämningsmagasin etc. Det är viktigt att titta på hela dagvattensystemet när det dimensioneras.

Dagvattenhantering ska studeras både för de regn som systemet är dimensionerat för men också för vad som händer när inte systemet fungerar dvs var vattnet vägen när ledningsnätet är fullt eller ur funktion av olika anledningar.

Instängda områden ska i möjligaste mån undvikas och där det inte kan undvikas måste en noggrann studie göras med avseende på höjdsättning och åtgärder för att minska risken för skador.

Markavvattning t.ex. dike från naturmark måste beaktas och hanteras så att vatten från omgivande mark i första hand inte leds in i det kommunala ledningsnätet utan hanteras separat.

Dagvatten kan innehålla höga halter av föroreningar, beroende på vilka ytor som avvattnas, och det är viktigt att minska de föroreningar som når recipienten genom att reducera dessa föroreningar på bästa sätt genom olika reningsmetoder. Det finns även ett flertal andra aktiviteter som kan påverka dagvattnet som tex hur man hanterar fordonstvätt och poolvatten. En förteckning över ett flertal aktiviteter och hur dessa bör hanteras finns i bilaga 3.

Mark och byggnad ska höjdsättas med hänsyn till översvämningsrisk.

Vid förtätning och nybyggnation är det viktigt att ta hänsyn även till framtida tilltänkt bebyggelse så att en långsiktig och hållbar dagvattenhantering kan uppnås.

Förtätning och planändring

Förtätning kopplad till ledningsnät som inte uppfyller gällande kapacitetskrav:

Ingen försämring får ske mot dagens situation, dvs vid förtätning ska åtgärder vidtas så att inte försämringar uppkommer nedströms. Om det inte finns plats för någon kommunal åtgärd eller om
åtgärder kräver stor och orimlig kommunal investering ska krav ställas på exploatören för att göra området byggbart.

Förtätning kopplad till ledningsnät som uppfyller gällande kapacitetskrav:
Påkopplingar som tar i anspråk kapacitet i ledningsnätet ska om möjligt undvikas. Åtgärder inne på fastighetsmark skall uppmuntras genom möjlighet till reduktion av dagvattentaxan.

Förtätning och kvalitetskrav:
Vid förtätning och planändring av betydelse måste kapaciteten i befintlig reningsanläggning för dagvatten kontrolleras, både kapacitet att ta hand om eller leda förbi delar av det ökade flödet samt kapacitet att rena den tillkommande volymen.

Nybyggnation (tidigare obebyggd mark)

Nybyggnation som kopplas till befintligt dagvattensystem:
- Kapaciteten på det befintliga dagvattensystemet styr utformningen av dagvattensystemet vid nybyggnation.
- Finns det möjlighet till kommunala lösningar ska det gälla i första hand, men om det inte finns tillräckliga möjligheter till kommunala lösningar så ska krav ställas på fastighetsägare och exploatör genom t.ex. avtal.
- Kapaciteten i befintlig reningsanläggning för dagvatten måste kontrolleras, både kapacitet att ta hand om eller leda förbi delar av det ökade flödet och kapacitet att rena den tillkommande volymen.

Nybyggnation med ledningsnät direkt till recipient:
- Dimensionering av dagvattensystemet görs enligt gällande dimensionerings principer.
- Reningsbehovet ska diskuteras med miljö- och hälsoskyddskontoret utifrån recipientens känslighet och dagvattnets kvalitet och kvantitet.
- Recipientens känslighet för ökade flöden ska beaktas.

Befintlig bebyggelse

Fastighetsägare kan genom att ta hand om sitt dagvatten inne på den egna fastigheten få reduktion av dagvattentaxan enligt framtagna riktlinjer.

I samband med bygglov ska information ges till fastighetsägarna om möjligheten att få en reduktion av dagvattentaxan. Information om hantering av dag- och dräneringsvatten inne på tomtmark finns i bilaga 5.

VA-avdelningen arbetar kontinuerligt med ledningsnätet och dagvattenanläggningar för att förbättra och säkra deras funktion.

Dagvattentaxa
Den som tar hand om dagvattnet på sin egen fastighet kan få sänkt avgift för posten dagvatten fastighet i dagvattentaxan. Fastigheter där det finns dagvattenservis upprättat har möjlighet att få sänkt avgift med 90 % för posten dagvatten fastighet i dagvattentaxan om allt dagvatten tas omhand lokalt.

För att få sänkt avgift ska fastighetsägaren anmäla att dagvatten tas omhand lokalt på fastigheten.
Dagvatten i Plan- och exploateringsprocessen

Översiktsplan, planprogram

I översiktspanarbete ska de övergripande lösningarna kring lågstråk, recipienter och dagvattenhantering redovisas.

Vid framtagande av ÖP och planprogram måste tillräckliga ytor säkras för dagvattenhantering.

Checklistan för dagvattenhantering i ÖP respektive planprogram ska användas, se bilaga 2.

Detaljplan

Checklistan för dagvattenhantering i detaljplaner ska användas, se bilaga 2.

Detaljplanen ska vid behov höjdsättas och anpassas så att instängda områden undviks i möjligaste mån. Behovet avgörs av projektgruppen.

Tillräckliga ytor för dagvattenhanteringen ska avsättas i detaljplanen så att kommunens ansvar gällande dagvatten uppfylls.

Hänsyn ska tas till de ytor som avsatts för grönstruktur och framtida behov av dagvattenhantering i grönstrukturprogrammet, som är en del av översiktsplanen. Dessa ytor kan behövas i ett större sammanhang än det område som själva detaljplanen gäller.

I samband med planläggningen ska det tidigt tydliggöras vem (VA- eller skattekollektivet) som ansvarar för vad, både vad gäller investeringen och driften för dagvattenanläggningen.

Behov och omfattning av en dagvattenutredning ska diskuteras i alla detaljplaner.

Projektering

Vid dimensionering och projektering av ett dagvattensystem gäller aktuella dimensioneringskrav och VA-avdelningens riktlinjer och krav gällande utformning och material.

I samband med projektering av en anläggning ska det tidigt tydliggöras vem (VA- eller skattekollektivet) som ansvarar för vad, både vad gäller investeringen och driften.

Markanvisning och avtal

Vid tecknande av arrende, nyttjanderättsavtal och markförsäljning ska hänsyn tas till det framtida behovet av yta för dagvattenhantering enligt VA-avdelningens framtagna planeringsunderlag.

Bygglov

Dagvattenhanteringen ska hanteras så tidigt som möjligt i bygglovsprocessen så att byggnader och andra anläggningar placeras på rätt ställe och på rätt höjd så att dagvattenhanteringen på fastigheten underlättas och byggnader säkras för skador vid eventuella översvämningar.

Ställda krav gällande dagvattenhantering i planbestämmelser ska bevakas.
Klimatanpassning och ansvarsfördelning

Dagvattensystemet dimensioneras enligt gällande riktlinjer från Svenskt Vatten. Även om systemet dimensioneras enligt gällande krav och riktlinjer så kommer det ändå tillfällen då systemet inte räcker till och det är då viktigt att studera vad som händer. Vid risk för stora skador på byggnationer och anläggningar kan dagvattensystemet behöva dimensioneras upp ytterligare på skattekollecitets bekostnad om dimensioneringen är utöver VA-kollektivets ansvar.

Ansvarsfördelning vid ny bebyggelse

<table>
<thead>
<tr>
<th>VA-huvudmannens ansvar</th>
<th>Kommunens ansvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Återkomsttider för regn vid fylld ledning</td>
<td>Återkomsttider för trycklinje i marknivå</td>
</tr>
<tr>
<td>Nya duplikatsystem</td>
<td></td>
</tr>
<tr>
<td>Gles bostadsbebyggelse</td>
<td>2</td>
</tr>
<tr>
<td>Tät bostadsbebyggelse</td>
<td>5</td>
</tr>
<tr>
<td>Centrum- och affärsområden</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabell 1. Minimikrav på återkomsttider för regn vid dimensionering av nya dagvattensystem. Tabell hämtad från Svenskt Vattenens publikation P110, sid 42.

Av rättsfall (NJA 1984:62) kan man utläsa att kommunen har ett större ansvar för skador på grund av översvämnings, ras/skred och erosion än den enskilda, eftersom kommunen har bättre resurser än den byggande att utreda dessa skaderisker. Samtidigt har man i domar fastslagit att även större exploaterörer har ett långtgående ansvar att utreda konsekvenser och lämpliga åtgärder.
Ansvarsfördelning vid befintlig bebyggelse

Ansvarsfördelning inom kommunen

Planeringsförutsättningar

Allmänt samhällsviktiga funktioner ska säkras till ett 300 års regn och/eller flöden. Samhällsviktiga funktioner som handlar om liv och hälsa ska byggas där det inte finns risk för översvämnings och/eller på ett sådant sätt att översvämnings helt undviks.

Icke samhällsviktig verksamhet hanteras enligt gällande riktlinjer från Svenskt Vatten P110.

Samhällsviktig verksamhet som innebär liv och hälsa är:
- Sjukhus
- Akutsjukvård

Allmänt samhällsviktiga verksamheter:
- Information och kommunikationssystem
- Energiförsörjning och distribution (el, fjärrvärme, bränsle etc)
- Dricksvattenförsörjning
- Räddningstjänst, Polis etc
- Vårdcentraler
- Förskolor, skolor och fritidshem
- Prioriterade utryckningsvägar

Tekniska förvaltningen

Tekniska förvaltningens ansvar för dagvattenhantering delas mellan VA-huvudmannen (VA-avdelningen) och skattekollektivet (Planeringsavdelningen och Produktionsavdelningen) eftersom finansiering av verksamheten och lagstiftningen är olika.

VA-avdelningen ansvarar för huvudledningsnätet för dagvatten, vilket innebär servisledningen mellan förbindelsepunkten och huvudledningsnätet samt huvudledningen. Huvudledningsnätet omfattar både ledningar och diken samt tillhörande brunnar och anordningar på huvudledningsnätet. VA-avdelningen ansvarar även för anläggningar avsedda för rening av dagvatten samt fördjupning av dagvatten avsedda för regn med återkomsttid <10 år i befintliga system (dimensionerat enligt Svenskt Vattens publikation P90) och i nya system för regn med återkomsttid mellan 10 och 30 år (enligt Svenskt Vatten P110). VA-avdelningen anser för att hela dagvattensystemet är dimensionerat enligt gällande principer samt för drift och underhåll.

Skattekollektivet (planeringsavdelningen och produktionsavdelningen) anser för dagvatten som uppstår på allmän platsmark och till dess att det nått fram till huvudledningen. Det innebär t ex ansvar för vägdiken, svackdiken, regnbäddar, rännstensbrunnar och anordningsledningar mellan rännstensbrunn och huvudledning. Ansvaret gällande planering av skattekollektivets dagvattenhantering ligger på planeringsavdelningen medan drift av anläggningar, anordningar och
ledningsnät ligger på produktionsavdelningen. Skattekollektivet ansvarar även för dagvattenanläggningar som syftar till att fördröja dagvatten där VA-avdelningen inte är ansvariga, dvs vid regn med återkomsttid större än det som VA-avdelningen ansvarar för.

Skattekollektivet ansvarar för (investering och drift) att omhänderta och avleda naturvatten så att det inte leds in i det allmänna dagvattensystemet om det är möjligt.

Stadsbyggnadskontoret

Stadsbyggnadskontoret ansvarar för att marken planläggs för det som den är mest lämplig för och att eventuella planbestämmelser om dagvatten följs i bygglovshanteringan.

Miljö- och hälso-/skydds Kontoret

Miljö- och hälso-/skydds Kontoret är tillsynsmyndighet gällande dagvattenanläggningar samt remissinstans gällande kommunala planer.

Kommunledningsförvaltningen

Kommunledningsförvaltningen ansvarar för att dagvattenfrågorna beaktas fullt ut vid markförsäljning (där det är tillämpligt) och upprättande av exploateringsavtal, t ex att inte mark som behövs för dagvattenhantering säljs eller uppläts för annan verksamhet. Kommunledningsförvaltningen ansvarar även för att bevaka möjligt inköp av mark för dagvattenhantering.

Säkerhetsfunktionen stödjer verksamhetsansvariga att inventera och planera sina samhällsviktiga verksamheter så att de inte påverkas av kraftiga flöden och regn.

Räddningstjänsten

Räddningstjänsten ansvarar för att ha utrustning och kunskaper för att på rätt sätt hantera översvämningssituationer.

Förhöjd beredskap

Översvämningssituationer i vattendrag

Kommunen har verksamhetsutövaransvar för de dammanläggningar som kommunen äger och sköter, vilket framför allt berör Mörrumsån. Ägaransvaret omfattar 14 st dammar, av vilka flera reglerar stora sjömagasin, däribland Helgasjön/Toftasjön (50 km2), Örken (27 km2) och Innaren (17 km2). Mot bakgrund av de stora regleringsvolymerna är kommunens agerande i samband med höga flöden en mycket viktig fråga för att värna allmänna och enskilda intressen längs Mörrumsån.

Om det med anledning av väderleksrapporter går att förutse risk för plötsliga nedslagningar (underkylt vatten innan isläggning) samt klass 1-varningar eller högre vattenflöden, ska beslut omedelbart fattas om eventuell förstärkt jourberedskap, utökad egen tillsyn/rondering av anläggningarna, information till Länsstyrelsen, räddningstjänst, andra reglerare mm. En utförligare beskrivning av beslutsgång och övriga rutiner vid risk för vattendragsöversvämnning skall tas fram.

Kris situation

Växjö kommun agerar vid en extrem händelse i enlighet med det svenska systemet för samhällsskydd och beredskap: ansvars-, närhets- och likhetsprincipen. Dessa principer innebär att den som har ansvar för en verksamhet under normala förhållanden ska också ha det under en kris situation, att en kris ska hanteras där den inträffar och av dem som är närmast berörda och ansvariga samt att verksamheten, så långt det är möjligt, ska fungera på liknande sätt som vid normala förhållanden.
Vid extraordinära händelser kan kommunstyrelsen överta ansvaret från berörda nämnder. Arbetet följer dock fortfarande de tre grundprinciperna.

Dagvattensystem

Dimensioneringskriterier övergripande

Dagvattensystem ska dimensioneras enligt Svenskt Vattens publikation *P110 Avledning av dag-, drän- och spillvatten*.

En klimatfaktor enligt avsnitt 1.8.3 i P110 ska användas vid dimensionering av ledningsnät. Klimatfaktorn ska vara 1,25 för regn med kortare varaktighet än en timme och 1,2 för regn med längre varaktighet, upp till ett dygn.

Om det finns en möjlig att systemet byggs ut eller att förtätning kan ske i framtiden ska detta tas i beaktande när systemet dimensioneras.

Dämningsnivå för dagvatten till nybyggnadskartor lämnas alltid minst i marknivå vid förbindelsepunkten både vid nyexpanderade områden och vid förtätning oavsett vad som tidigare angivits i närområdet. Om risk för marköversvämning finns, enligt framtagen översvämningskartering i handläggarkartan, ska dämningsnivå anges för 100-års regnets högsta nivå. Om avsteg ska göras avseende dämningsnivån enligt ovan ska det godkännas av VA-avdelningen.

Alla nya dagvattensystem ska dimensioneras enligt Svenskt Vattens publikation P110, men minsta dimension på huvudledning ska vara 315 mm. Hänsyn ska tas så att det inte uppstår försämringar nedströms som kan orsaka skada. Detta kan innebära att tillfälliga åtgärder måste vidtas i väntan på kommande om- eller utbyggnader av dagvattensystemet.

Även om krav ställs på att dagvattenåtgärder görs inne på fastighetsmark ska ingen hänsyn tas till det i dimensioneringen av det nya ledningsnätet om inget annat är överenskommot med VA-avdelningen. De åtgärder som görs inne på fastigheten är en bonus och kan eventuellt inte säkras för framtiden.

Vid översiktliga beräkningar och vid mindre områden är det ok att använda manuell beräkning. Vid mer omfattande beräkningar skall datamodellberäkningar göras.

Dimensioneringskriterier dagvattenanläggningar

Vid dimensionering skiljer man på reningsanläggningar och utjämnings-/fördröjningsmagasin.

Anläggning för rening av dagvatten

Utgående halter och mängder i dagvattnet ska kontrolleras, t ex i programmet Stormtac.
Vid dimensionering ska man även ta hänsyn till recipientens status och miljökvalitetsnormerna, om inte detta gjorts tidigare, så att dessa inte riskerar att försämras.

Öppna dammar med permanent vattenspegel
En öppen damm dimensioneras för att ta emot ett medelregn i den första reglervolymen i dammen. Ett medelregn för Växjö motsvarar 7,3 mm. Medelregnets uppehållstid i ska vara minst 12 timmar i dammen.

Dimensionering och utformning av öppna dammar:

- Flacka (1:6) och stabila slänter vid vattenbrynet och minst 0,5 meter in under vattenytan vid medelvattenivån.
- Vattendjup vid dammkant vid medelvattenivå ska inte överstiga 0,2 meter.
- Vattendjupet kan gärna variera, men bör vara minst en meter om man vill undvika igenväxning.
- Inga stängsel om inte särskilda förutsättningar kräver det.
- In- och utlopp ska vara lättåtkomliga och förstes med stående (vertikalt) galler som inte går ända ner till botten, se bild 3.
- Utlopp från dammen utformas strypta, dämda och med bräddmöjligheter.
- Ingen tätduk i botten om platsens förutsättningar inte kräver det.
- Anläggning utformas för rening i två steg, t ex sedimentation och oljeavskiljning, biologisk rening eller filtrering.
- Anläggning utformas med lättrensad första damm för grovsedimentering samt med avstängningsventil/slusslucka på inloppet och med bräddmöjlighet för förbiledning av höga flöden.
- Uppehållstiden i anläggningen bör vara minst tolv timmar för att erhålla god reduktion av föroreningar.
- Flack slänt eller ramp ska utföras på en del av anläggningen så att båt kan läggas i eller för att underlätta nedkörning av maskin.
- Det ska finnas ytor för avvattning av bottensediment i direkt anslutning till anläggningen. Om det inte är möjligt ska en plan finnas för hur sediment hanteras vid tömning.

Bild 3: Skiss på utformning av galler vid in- och utlopp
Översilningsytor

Översilningsytor är en reningsanläggning som består av en fördelningsanordning (till ex ett dike) en låg lutande gräsyta och ett uppsamlingsdike eller ledning.

Bild 5: Översilningsyta i Kristianstad. Källa. Veg Tech AB.

- **Dimensionering**: Storleken en översilningsyta bör motsvara ca 800–2500 m² per avrinnande hårdgjorda yta
- **Gräsytas lutning**: Det rekommenderas svagt sluttande yta (2–5 %).
- **Botten**: För att gynna infiltration av dagvatten förses botten med ett genomsläppligt material
- **Vegetation**: Tät gräsevegetation
- **Fördelningsanordning**: Om dagvatten kommer direkt från en intilliggande hårdgjord yta rekommenderas att fördelningsanordningen utformas enligt nedanstående skiss.

Bild 6: Skiss över fördelningsanordningen vid översilningsytor
Raingarden/Biofilter
En raingarden är en vegetationsbeklädd markbädd som kan vara upphöjd eller nedsänkt, och som är försett med en fördröjnings/översvämningszon. Det blir en synlig vattenyta endast under korta perioder i samband med kraftiga regn. Överskottsvatten avleds via bräddavlopp till dagvattennätet.

Raingardens huvudsyftet är att ta hand om en ”first flush”, d.v.s. de första och mest förorenade millimeterarna i ett regnförlopp. Därför rekommenderas att anlägga raingarden nära föroreningskällan såsom vägar och parkeringsytor.

Dimensionering och utformning av raingarden och biofilter
- **Dimensionering:** Storleken av en raingarden bör motsvara ca 3–10 % av den avrinnande hårdgjorda ytan.
- **Växtval:** Växter som klarar både perioder av torka och perioder av höga vattennivåer.
- **Substrat:** Genomsläppligt substrat anses vara ett substrat med en hydrauliskkonduktivitet på 100–500 mm/timme. För att nå en bra reningseffekt bör substratet ha en kationbyteskapacitet (CEC) på ca 20 cmol⁻¹.
- **Inloppet/n:** Innanför inloppet bör grövre material placeras för att undvika urspolning samt möjligheten för grovsedimentering av partiklar.
- **Bräddavlopp:** Placeras mellan växtbädden mellan 0,2 – 0,3 m. Minsta dimension är 200 mm.
- **Dränering:** Vid dåliga infiltrations möjligheter i underlaget förses raingarden med dränering som kopplas direkt till bräddavloppet.
- **Tätskikt:** Vid förekomst av förorenad mark eller vid närheten av en vattentäkt förses raingarden med ett tätskikt.

Svackdike
Svackdiken ger möjlighet till ledning, fördröjning och rening av det tillkommande dagvattnet från omgivande mark.

Dimensionering och utformning av svackdiken:
- **Dimensionering:** Storleken av ett svackdike bör motsvara ca 3–12 % av den avrinnande hårdgjorda ytan.
- **Släntlutning:** Svagt sluttande sidor (≥ 1:3)
- **Längslutning:** 0,2–2 %
- **Djupt:** Minsta rekommenderade djup 0,5 meter
- **Max hastighet:** Den maximala vattenhastigheten blir ≤ 0,5 m/s.
- **Vegetation:** Tät gräsvegetation i slänterna. Kan kompletteras med grövre material i dikesbotten.
- **Bräddavlopp:** För att åstadkomma fördröjning av dagvatten bör, bräddavloppet placeras över växtbädden mellan 0,2 – 0,3 m. Minsta dimensionen är 200 mm.
- **Galler vid in – och utlopp:** Se skiss på utformning av galler.
Anläggning för utjämning av dagvatten

Ett utjämningsmagasin görs lämpligen så stort som platsen tillåter. Anläggningen kan utformas för att ta emot dagvatten direkt när det börjar regna, dvs ett genomströmningsmagasin, eller som ett bräddningsmagasin som fylls upp vid en viss dämningsnivå i ledningsnätet.

Utjämningsmagasinen utformas i första hand som torra ytor som ställs under vatten endast då det regnar för att ge så låga skötselkostnader som möjligt.

Torra dammar

Torra dammar utformas som nedsänkta gröna ytor. Det är en fördel om vattnet kan spridas på hela ytan. Det sänker flödeshastigheten och gynnar sedimentation av partikelbundna föroreningar. Det kan utformas som multifunktionella ytor där dagvattenhanteringen samsas med andra intressen som rekreation och promenadstråk m.m.

Torra dammar eller infiltrationsdammar möjliggör till ledning, fördröjning och delvis rening av dagvatten.

Dimensionering och utformning av torra dammar:

- **Dimensionering:** Storleken en torr damm bör motsvara ca 0,5–8 % av den avrinnande hårdgjorda ytan. (För att nå en bra reningseffekt).
- **Släntlutning:** Det rekommenderas svagt sluttande sidor (≥ 1:4).
- **Botten:** För att gynna infiltration av dagvatten förses botten med ett genomsläppligt material. Botten dräneras för att få en stabil yta.
- **Vegetation:** Tät gräsvegetation i slänterna och botten.
- **Utlopp:** Snyft bottenutlopp/dike som förses med bräddmöjligheter
- **Galler vid in – och utlopp:** Se skiss på utformning av galler.

Underjordiska magasin

Underjordiska magasin är t ex rörmagasin eller magasin byggda av betongelement.

Dimensionering och utformning av underjordiska magasin

- Anläggningen ska vara inspekterbar i alla delar.
- Anläggningen ska förses med brunnar så att spolning och inspektion möjliggörs.
- Nivåmätare bör installeras.
Skelettjord

Skelettjordar anläggs ofta i kombination med trädplantering för att åstadkomma en bra miljö för trädtilväxt. Syftet kan även vara att fördröja dagvatten från vägar och parkeringsytor. Skelettjord består av en blandning av jord och makadam och där dagvattnet kan infiltreras via fördelningsledningar eller brunnar i anläggningen.

Dimensionering och utformning av skelettjord:

- **Dimensionering:** Storleken av skelettjord bör motsvara ca 5–20 % av den avrinnande hårdgjorda ytan. (För att nå en bra reningseffekt).
- **Porvolym:** ca 25–30 %.
- **Luftbrunnar:** För att gynna luftutbytte förses skelettjordar med luftbrunnar.
- **Botten:** Svag lutning mot en brunn som leder överskottsvatten till en brunn. Botten luckras upp för att gynna infiltration av dagvatten.
- **För att gynna rening av dagvatten rekommenderas att blanda substratet med ca 8-12 % biokol**
Drift och underhåll av dagvattenanläggningar och ledningsnät

Drift av reningsanläggningar för dagvatten ska ske i enlighet med upprättat egenkontrollprogram. Övrig drift och underhåll av ledningsnät och utjämningsmagasin består av t ex filmning och renspolning av ledningar, rensning av galler, gräsklippning mm.

Många av dagvattenanläggningarna (reningsanläggningar och utjämningsmagasin) finns placerade i parkmark eller grönområden och där är det viktigt att gränsdragningen mellan dagvattenanläggningen och parkmarken/grönytan klargörs för att skötsel och kostnader ska hamna under rätt ansvar.

Vid nyanligngning är det viktigt att i ett tidigt skede diskutera gränsdragningen mellan Planerings-/Produktionsavdelningen och VA-avdelningen gällande både investering och drift så att båda parter är överens om utformningen på anläggningen.

Skattekollektivet ansvarar för (investering och drift) att omhänderta och avleda naturvatten så att det inte leds in i det allmänna dagvattensystemet om det är möjligt.

Generellt gäller följande:
- Gränsen för dagvattenanläggningen går vid dammkron eller tänkt vattenlinje vid högvidpartna.
- VA-avdelningen ansvarar för och bekostar skötsel av ytor inom dagvattenanläggningen och de ytor som behövs för den, t ex tillfartsvägar o dyl. (Gäller även de anläggningar som anlägs på ytor som tidigare varit park och skutts av Produktionsavdelningen.) Övrig mark runt om (skog eller park) ansvarar parkenheten eller skogsenheten på Produktionsavdelningen för.

Bild 9: Exempel på uppbyggnad av skelettjord (Örjan Ståls föredrag ”Träd och dagvatten” på Rörnätskonferensen i Malmö 1-2 april 2014).
- Översvämningsytor för regn med återkomsttid som överskrider VA-avdelningens ansvar sköts helt av parkenheten på Produktionsavdelningen.
- Där man anlagt stråk med naturmark (gröna släpp) för utsläpp av ytvatten från områden som annars riskerar att bli instängda, ansvarar Produktionsavdelningen för skötsel och underhåll.
- Vid nyanläggning ansvarar beställaren för etableringsskötsel i två år innan övertagandet sker av Tekniska förvaltningen.
- VA-tekniska delar så som inlopp och utlopp sköts av VA-avdelningen.
- En dagvattenanläggning som är placerad centralt i mycket publik parkmark kräver mer och tätare skötsel, t ex gräsklippning varje vecka under säsong, än en anläggning i ett ytterområde eller skogsmark.

![Bild 10: Dagvattenanläggning i parkmiljö Savannen på Vikaholm](image)

Dimensionerande regn

Vid manuell beräkning kan blockregn användas med lämplig varaktighet och återkomsttid. Ett blockregn är ett teoretiskt regn som har samma regnintensitet under hela varaktigheten. Varaktigheten på regnet väljs utifrån avrinningsområdets storlek och rinntiden till den punkt som ska dimensioneras.

Återkomsttiden för ett regn innebär hur ofta det statistiskt inträffar dvs ett 10-års regn inträffar statistiskt var 10:e år.

Varaktigheten definierar hur länge det regnar.
Klassificering av dagvatten

Föroreningsinnehåll i dagvatten och reningsmetod

Dagvattnets innehåll av föroreningar och näringsämnen varierar kraftigt beroende på markanvändning, kemikalieanvändning, nederbörd och årstid. Den klassificering av dagvattnet som används i Växjö har utarbetats och tillämpats i flera andra städer i landet och har omarbetats något för att passa Växjös förhållanden.

Dagvattnet delas in i tre grupper; låga, måttliga eller höga föroreningshalter beroende på innehåll av föroreningar samt risk för negativa biologiska effekter. Klassificeringen bygger på de fem klasser som finns i Naturvårdsverkets bedömningsgrunder för sjöar och vattendrag, där de tre lägsta klasserna har förts samman till en.

Det är viktigt att påpeka att klassificeringen av dagvatten i Växjö inte ger en fullständig bild av hur förorenat eller miljöpåverkande ett dagvatten är. Dagvattnet har delats in i grupper beroende på halter av olika föroreningsparametrar så som tungmetaller, näringsämnen, suspenderat material, PAH och olja. Vad gäller tungmetallerna är det bly, koppar, zink, kadmium, krom, nickel och kvicksilver som ligger till grund för klassificeringen.

Studier på dagvattnets toxicitet samt en mängd andra ämnen i dagvattnet som kan vara miljöpåverkande har inte beaktats vid klassificeringen. Mycket tyder på att man t.ex. i ett villakvarter använder betydligt mer bekämpningsmedel än på andra ytor i staden.

<table>
<thead>
<tr>
<th>Markanvändning</th>
<th>Förreningenhalter</th>
<th>Exempel på rening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innerstaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bostads- och arbetsområden inkl. lokalgator.</td>
<td>Måttliga</td>
<td>Grönytor, infiltrationsytor</td>
</tr>
<tr>
<td>Ytterstaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bostadsområden (flerfamiljshus) och arbetsområden inkl. lokalgator</td>
<td>Låga-Måttliga</td>
<td>Grönytor, infiltrationsytor</td>
</tr>
<tr>
<td>Småhusområden inkl. lokalgator</td>
<td>Låga</td>
<td>Grönytor, infiltrationsytor</td>
</tr>
<tr>
<td>Inner- och ytterstad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Större parkeringsanläggning och terminalområden</td>
<td>Måttliga-Höga</td>
<td>Svackdiken, grönytor, dammar, avskiljare</td>
</tr>
</tbody>
</table>
Industrifastigheter med miljöfarlig verksamhet

<table>
<thead>
<tr>
<th>Trafikerade ytor</th>
<th>Beroende på verksamhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gator <5 000 fordon/dygn</td>
<td>Låga</td>
</tr>
<tr>
<td>Gator med 5 000-15 000 fordon/dygn</td>
<td>Låga-Måttliga</td>
</tr>
<tr>
<td>Trafikleder med >15 000 fordon/dygn</td>
<td>Måttliga-Höga</td>
</tr>
<tr>
<td>Parker, naturmark m.m.</td>
<td>Låga</td>
</tr>
</tbody>
</table>

Infiltration
- Svackdiken, dammar, filtervallar, översilningar

Normalt inget behov av rening

Riktvärden
Riktvärden för utsläpp av dagvatten är hämtade från Riktvärdesgruppens *Förslag till riktvärden för dagvattenutsläpp* (Regionala dagvattennätverket i Stockholms län, Regionplane- och trafikkontoret, Stockholms läns landsting, februari 2009). Riktvärdena är bestämda med utgångspunkt att dagvatten från mindre förorenande markanvändning som t ex skogsmark, ångsmark och normala villaområden inte ska behöva renas, eftersom det inte ansetts som rimligt att kräva rening av sådant dagvatten.

Utöver riktvärdena behöver hänsyn tas till miljökvalitetsnormer för vatten. Miljökvalitetsnormerna finns i Havs- och vattenmyndighetens föreskrifter (HVMFS 2013:19) om klassificering och miljökvalitetsnormer avseende ytvatten. En klassificering av våra recipienter finns i bilaga 4.

Riktvärden för utsläpp av dagvatten i Växjö kommun redovisas i tabell 3 nedan. Kolumnen riktvärden vid utsläpp till recipient avser utsläpp av dagvatten från t ex det kommunala dagvattensystemet till recipienten samt utsläpp av dagvatten från verksamhetsutövare direkt till recipient utan att dagvattnet först leds via det kommunala dagvattensystemet.

Tabellen riktvärden vid utsläpp till ledningsnät avser utsläpp av dagvatten från verksamhetsutövare till det kommunala dagvattensystemet. Om riktvärden överskrids kan rening krävas av verksamhetsutövaren med stöd av gällande ABVA.

<table>
<thead>
<tr>
<th>Ämne ¹</th>
<th>Riktvärden vid utsläpp till recipient (µg/l)</th>
<th>Riktvärden vid utsläpp till ledningsnät (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosfor (P)</td>
<td>160²</td>
<td>250</td>
</tr>
<tr>
<td>Kväve (N)</td>
<td>2 000</td>
<td>3 500</td>
</tr>
<tr>
<td>Bly (Pb)</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Koppar (Cu)</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Zink (Zn)</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>Förrening</td>
<td>Riktvärde (nL)</td>
<td>Maksimalt (nL)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Krom (Cr)</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Kvicksilver (Hg)³</td>
<td>0,03</td>
<td>0,1</td>
</tr>
<tr>
<td>Suspenderad substans</td>
<td>40 000</td>
<td>100 000</td>
</tr>
<tr>
<td>Oljeindex</td>
<td>400</td>
<td>5 000</td>
</tr>
<tr>
<td>Benso(a)pyren (BaP)⁴</td>
<td>0,03</td>
<td>0,1</td>
</tr>
<tr>
<td>pH</td>
<td>6-9</td>
<td>6-9</td>
</tr>
</tbody>
</table>

Tabell 3: Växjö kommuns riktvärden för föroreningar i dagvatten.

1 För metaller och näringsämnen avses totala fraktioner som analyseras genom syrauppslutning (ej filtrerat eller centrifugerat prov).
2 För Växjösjön, Trummen, Södra och Norra Bergundasjön, som är känsliga för fosfor, kan andra riktvärden gälla.
3 Osäkert dataunderlag för Hg. Överskridande av riktvärden för dessa ämnen bör inte ensamt utgöra underlag för eventuella åtgärder.
Bilaga 1
Ordlista - begrepp som behöver förklaras

ABVA- lokala allmänna bestämmelser för vatten och avlopp

Avloppsvatten: Vatten som avleds i avloppsledningsnätet. Kan bestå av spillvatten, dagvatten och dräneringsvatten.

Dagvatten: Ytligt avrinnande regnvatten och smältvatten.

Dagvattensystem: Dagvattenledningar, diken, svackdiken, magasin etc som hänger ihop i ett system.

Dimensionerande regn – ett regn med en viss intensitet (l/s ha) och varaktighet (min)

Dräneringsvatten: Grundvatten och i marken nedträngande vatten från regn och snösmältning som avleds i dräneringsledning.

Duplikatsystem: Avloppssystem där spillvatten och dagvatten avleds i skilda ledningar.

Förbindelsepunkt: Den punkt där inkoppling av en fastighets ledningar till den kommunala anläggningen görs. Den ligger normalt 0,5 m utanför tomtgräns, men kan i vissa fall ligga på ett annat ställe. Innanför den har fastighetsägaren det fulla ansvaret för ledningssystemet (förutom för vattenmätaren, som är kommunens).

Hårdgjord yta: Yta där vatten inte kan tränga in, till exempel tak, asfalt, sten och plattor.

LOD (Lokalt omhändertagande av dagvatten): Innebär att dagvattnet tas omhand i det område det bildats i stället för att ledas bort i ledning.

Reglervolym: Den volym som ett magasin kan magasinera

Servisledningar: Ledningar som ansluter en fastighet till det kommunala nätet.

Spillvatten: Förorenat vatten från exempelvis hushåll, det vill säga vatten från toaletter, disk och tvätt.

Spygatt: Golvbrunn utan vattenlås utomhus
Bilaga 2
Ansvarsfördelning och checklistor i plan- och exploateringsprocessen

<table>
<thead>
<tr>
<th>Checklista ÖP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frågeställning</td>
<td>Källa</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Planeringsförutsättningar för dagvattenhantering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geologi och hydrologi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Översiktlig analys av platsens geologiska förutsättningar (berg i dagen, jordarter mm)</td>
<td>Handläggarkartan, SGU:s kartvisare</td>
<td></td>
</tr>
<tr>
<td>Översiktlig analys över förorenad mark</td>
<td>Handläggarkartan, MoH, Länsstyrelsen</td>
<td></td>
</tr>
<tr>
<td>Recipienter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definiera avrinningsområden för avledning av dagvatten</td>
<td>Handläggarkartan, VA-avdelningen</td>
<td></td>
</tr>
<tr>
<td>Kontrollera om dagvatten kan tänkas att avvattnas till vattenstråk (åar, markavvattningsföretag mm)?</td>
<td>Handläggarkartan, VA-avdelningen, Vattenstrateg</td>
<td></td>
</tr>
<tr>
<td>Kontrollera recipienternas klassificerade status eller bedöm recipientens känslighet för att nå MKN</td>
<td>VISS, Vattenstrateg</td>
<td></td>
</tr>
<tr>
<td>Översvämningsrisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokalisera riskområden för översvämningar (från vattendrag och områden som är låglänta, saknar avrinningsmöjligheter och som därför är svåra att avvattna)</td>
<td>Handläggarkartan</td>
<td></td>
</tr>
<tr>
<td>Vattentäkter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrollera dricksvattenförekomster som behöver skyddas</td>
<td>VISS, Handläggarkartan, Regional vattenförsörjningsplan, VA-avdelningen</td>
<td></td>
</tr>
<tr>
<td>Ledningsnät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrollera kapacitet i anläggningar och ledningsnät.</td>
<td>VA-avdelningen</td>
<td></td>
</tr>
<tr>
<td>Markanvändning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrollera och bedöm behov av mark för framtida dagvattenhantering</td>
<td>VA-avdelningen</td>
<td></td>
</tr>
<tr>
<td>Frågeställning</td>
<td>Ja/Nej</td>
<td>Källa</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Geologi och hydrologi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om geotekniska förutsättningar?</td>
<td></td>
<td>Handläggarkartan, TF</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om markföroreningar?</td>
<td></td>
<td>Handläggarkartan, MoH</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om hydrologiska förutsättningar?</td>
<td></td>
<td>VA-avdelningen</td>
</tr>
<tr>
<td>Recipienter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behövs en utökad studie för att kunna bedöma områdets påverkan på recipientens status och möjlighet att nå MKN?</td>
<td></td>
<td>Vattenstrateg</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om vattenstråk (år, markavvattningsföretag mm)?</td>
<td></td>
<td>Vattenstrateg</td>
</tr>
<tr>
<td>Behövs en utökad studie om recipientens kapacitet att ta emot ett ökat flöde?</td>
<td></td>
<td>Vattenstrateg</td>
</tr>
<tr>
<td>Översvämningsrisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finns det områden med översvämningsrisk från sjöar och vattendrag?</td>
<td></td>
<td>Handläggarkartan, ÖP</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om riskområden för översvämnings (från vattendrag, sjöar och områden som är låglänta, saknar avrinningsmöjligheter och som därför är svåra att avvattna)?</td>
<td></td>
<td>VA-avdelningen, Handläggarkartan</td>
</tr>
<tr>
<td>Vattentäkter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Påverkar den föreslagna markanvändningen en dricksvattenförekomst och/eller vattentäkt?</td>
<td></td>
<td>VA-avdelningen</td>
</tr>
<tr>
<td>Ledningsnät /dagvattensystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behöver en detaljerad bild över dagvattensituationen tas fram för att belysa konsekvenserna utanför programområdet i ledningsnät och i anläggningarna</td>
<td></td>
<td>VA-avdelningen</td>
</tr>
<tr>
<td>Kontroll inför samråd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frågeställning</td>
<td>Ja/Nej</td>
<td>Om ja: På vilket sätt?</td>
</tr>
<tr>
<td>Geologi och hydrologi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tar planprogrammet hänsyn till framtagna kunskaperna om geoteknik, markföröreningar och hydrologi när bebyggelse och infrastruktur lokaliseras?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipienter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tar planprogrammet hänsyn till recipienternas status samt uppfyllande av MKN när bebyggelse och infrastruktur lokaliseras?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redovisas principer för att minimera dagvattnets föroreningar till recipient?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redovisas principer för att minimera dagvattnets påverkan på recipienten gällande flöden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Översvämningsrisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tar planprogrammet hänsyn till eventuell flödesförändring i befintliga vattenstråk?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redovisas vilka områden som kan bli aktuella för bebyggelse samt vilka områden som vid extrema tillfällen kan bli översvämmade och som därmed inte bör bebyggas utan skyddsåtgärder?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Har en sammantagen dagvattenlösning för programområdet höjdsatts övergripande och utformats så att extrema regn kan hanteras inom området utan att bebyggelsen skadas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vattentäkter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tar planprogrammet ställning till var och hur ny bebyggelse samt infrastruktur ska lokaliseras med hänsyn till dricksvattenförekomster/ vattentäkter?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ledningsnät</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tar planprogrammet hänsyn till befintliga och kommande problemområden avseende ledningsnät och anläggningar?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserveras utrymmen för avrinningsvägar, grönstråk, fördrojningsmagasin mm. som lösningar för dagvattenhanteringen?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samlad bedömning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redovisas bedömda konsekvenser inom och utanför programområdet?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Checklista Detaljplan

<table>
<thead>
<tr>
<th>Frågeställning</th>
<th>Ja/Nej</th>
<th>Källa</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planeringsförutsättningar för dagvattenhantering</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tidigare utredningar, underlag och riktlinjer

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖP</td>
<td>ÖP</td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>Program</td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>Handläggarkartan, DP</td>
<td></td>
</tr>
<tr>
<td>Geoteknik</td>
<td>Geoarkivet</td>
<td></td>
</tr>
</tbody>
</table>

Geologi och hydrologi

<table>
<thead>
<tr>
<th>Behövs fördjupade kunskaper om geotekniska förutsättningar</th>
<th>Handläggarkartan, TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behövs fördjupade kunskaper om markföroreningar?</td>
<td>Handläggarkartan, MoH</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om hydrologiska förutsättningar?</td>
<td>VA-avdelningen</td>
</tr>
</tbody>
</table>

Recipienter

<table>
<thead>
<tr>
<th>Vilka recipienter berörs?</th>
<th>VA-avdelningen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vad är berörda recipienters status?</td>
<td>VISS, vattenstrateg</td>
</tr>
<tr>
<td>Vad är berörda recipienters MKN?</td>
<td>VISS, VA-avdelningen, MoH, PLK</td>
</tr>
<tr>
<td>Behövs en utökad studie för att kunna bedöma områdets påverkan på recipientens status och möjlighet att nå MKN?</td>
<td>VA-avdelningen, VISS, Vattenstrateg</td>
</tr>
<tr>
<td>Behövs fördjupade kunskaper om vattenstråk (åar, markavvattningsföretag mm)?</td>
<td>VA-avdelningen, Vattenstrateg</td>
</tr>
<tr>
<td>Behövs en utökad studie om recipientens kapacitet att ta emot ett ökat flöde?</td>
<td>VA-avdelningen, Vattenstrateg</td>
</tr>
</tbody>
</table>

Översvämningsrisk

<table>
<thead>
<tr>
<th>Finns det områden med översvämningsrisk från sjöar och vattendrag?</th>
<th>Handläggarkartan, ÖP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behövs fördjupade kunskaper om riskområden för översvämningar (från vattendrag, sjöar och områden som är låglänta, saknar avrinningsmöjligheter och som därför är svåra att avvattna)?</td>
<td>VA-avdelningen</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Vattentäkter

<table>
<thead>
<tr>
<th>Påverkar den föreslagna markanvändningen en dricksvattenförekomst och/eller vattentäkt?</th>
<th>Va-avdelningen, MoH</th>
</tr>
</thead>
</table>

Ledningsnät/dagvattensystem

<table>
<thead>
<tr>
<th>Ligger området inom eller planeras att ligga inom verksamhetsområde för dagvatten?</th>
<th>VA-avdelningen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Finns det kapacitet i dagvattensystemet?</th>
<th>VA-avdelningen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Behövs en detaljerad bild över dagvattensituationen tas fram för att belysa konsekventerna utanför detaljplanen i ledningsnät och i anläggningarna</th>
<th>VA-avdelningen</th>
</tr>
</thead>
</table>

Ställningstagande

<table>
<thead>
<tr>
<th>Vilka dagvattenlösningar ska tillämpas inom området? (allmän platsmark/kvartersmark)</th>
<th>Projektgrupp/Team</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vilken gestaltningsnivå skall råda på allmän platsmark som kombineras med dagvatten?</th>
<th>Projektgrupp/Team</th>
</tr>
</thead>
</table>

Planskedet (framtagande av planförslag)

<table>
<thead>
<tr>
<th>Frågeställning</th>
<th>Ja/Nej</th>
<th>Källa</th>
<th>Kommentar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Behövs en grovprojektering av planområdet?</th>
<th>VA, proj</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Redovisas principerna för dagvattenhanteringen i planbeskrivningen?</th>
<th>Plan, VA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Redovisas eventuella planbestämmelser för att reglera dagvattenhanteringen?</th>
<th>Plan, VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redovisas status och MKN för recipienterna i planbeskrivningen?</td>
<td>Plan, MoH</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Redovisas eventuella åtgärder för att nå MKN?</td>
<td>Plan, MoH</td>
</tr>
<tr>
<td>Redovisas eventuella planbestämmelser för att skydda bebyggelse från översvämnning?</td>
<td>Plan, VA</td>
</tr>
<tr>
<td>Är tillräckligt med allmänplatsmark avsatt för dagvattenhantering?</td>
<td>VA, Proj, SoL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ställningstagande</th>
<th>Ja/Nej</th>
<th>Ansvar</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Är dagvattenhanteringen tillräckligt belyst och reglerad i plankarta och planbeskrivning?</td>
<td>Projektgrupp/Teamet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genomförande av DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skall denna detaljplan följas upp gällande dagvattenhanteringen och hur då och när isådana fall?</td>
</tr>
</tbody>
</table>
Bilaga 3

Aktiviteter som påverkar dagvatten

<table>
<thead>
<tr>
<th>Tillfällig verksamhet</th>
<th>Problematik</th>
<th>Hantering av förorenat vatten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blästring av t ex husfasader, broar</td>
<td>Tungmetaller samt partiklar som sedimenterar.</td>
<td>Vid blästring med vatten ska partikelavskiljning ske innan utsläpp till dagvattensystem, t ex genom sedimentering eller filtrering.</td>
</tr>
<tr>
<td>Brunnsborrning för t ex bergvärme</td>
<td>Igensättning av sediment/slam i ledningsnätet samt partiklar till recipienten.</td>
<td>Slam från brunnsborrning sedimenteras i container, vattenfasen infiltreras på egen tomt eller allmän mark om tillåtelse finns. Ej direkt utsläpp till kommunal dagvattenledning.</td>
</tr>
<tr>
<td>Länspumpning</td>
<td>Förrening beroende på vattnets kvalitet.</td>
<td>Länsvatten förorenat av partiklar sedimenteras innan utsläpp till dagvattenledning. Länsvatten som i andra avseenden är förorenat ska renas före utsläpp till dagvattenledning. Föroreningshalter ska underskrida angivna riktvärden i gällande riktvärdeslista.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tillfälliga upplag t ex för förorenade massor, gatubrunnslam, använd sandningssand, snö</td>
<td>Försinktighetsåtgärder ska vidtas, t ex förhindra avledning av förorenat vatten genom täckning/inneslutning, rening i t ex olje- och slamavskiljare eller kolfilter.</td>
<td></td>
</tr>
<tr>
<td>Tvätt av soptunnor</td>
<td>Tvättvatten infiltreras på gräsyta eller samlas upp och släpps ut till spillvattenledning.</td>
<td></td>
</tr>
<tr>
<td>Tömning av badbassänger och pooler</td>
<td>Klor, natriumhypoklorit och övriga reningskemikalier. Tvättvatten exponeras för solljus och infiltreras sedan på gräs- eller grusyta. Utsläpp av badvatten från simhallar och pooler > 20m3 kräver samråd med miljöingenjören på VA-avdelningen.</td>
<td></td>
</tr>
<tr>
<td>Tömning av kabelbrunnar</td>
<td>Kablarna kan innehålla miljöfarliga ämnen som hamnar in vatten och slam. Förorenat vatten analyseras för att konstatera om det är rent nog att släppas till dagvattenät. Annars omhändertas som farligt avfall.</td>
<td></td>
</tr>
<tr>
<td>Vatten från fjärrvärmesystem</td>
<td>Hög värme, färgat med pyranin. Ska i första hand släppas till dagvattensystemet. Max temperatur vid utsläpp direkt eller i nära anslutning till recipient/dike 30 grader. Vid utsläpp till ledningsnätet max 45 grader.</td>
<td></td>
</tr>
</tbody>
</table>
Övrigt som påverkar dagvattnets kvalitet
Konstgräsplaner och lekmattor tex gummiasfalt –
Vid nyanläggning ska fotbollsplaner etc formas med uppsamling och återföring av granualt.
Målsättning att befintliga planer ska byggas om så att uppsamling och återföring av granualt sker.
Användning av gummimattor på lekytor ska begränsas så att de används endast där det är befogat.
Saltning av vägar
Användning av salt som halkbekämpning på vägar och cykelvägar påverkar dagvattnets kvalitet.
Dagvattenätverket Dag&Nät vid Luleå Tekniska Universitet har i studier kommit fram till att förekomst av salt i dagvattnet förändrar fördelningen av metaller i vattnet så att andelen lösta metalljoner ökar. Den teknik som används för att rena dagvatten i Växjö kommun idag syftar främst till att reducera mängden partiklar och föroreningar bundna till partiklarna. En förändring av fördelningen av metaller i dagvattnet så att en större andel övergår i löst form, innebär därför att reningseffekten i anläggningen blir sämre och att en större andel av det totala innehållet av metaller går vidare direkt till recipienten.
Lösa metalljoner utgör också ett problem eftersom de i mycket högre grad är biotillgängliga och därmed kan vara toxiska för vattenlevande organismer. Användning av salt i halkbekämpande syfte bör ur dagvattensynpunkt därför begränsas och användas endast på de vägar och ytor där behov föreligger.
Bilaga 4

Klassificering av recipenter

Övergripande

Syftet med recipientklassificeringen är dels att ta fram ett kunskapsunderlag och utifrån detta avgöra vilka recipenter som bättre kan ta emot dagvatten än andra ur föroreningssynpunkt.

Riktlinjer vid bedömning av recipenter

Utgångspunkter för bedömning av recipenter

De mest uppenbara riskerna med dagvattenutsläpp till kommunens sjöar och vattendrag är påverkan på kemisk status (innehållet av tungmetaller, oljor och andra miljögifter) samt näringsstatus, främst fosfor. Enligt miljömål, lagar och förordningar är det en strävan att i princip överallt minska utsläppen av dessa ämnen. En stor risk för främst vattendrag är även ett ökat flöde som kan orsaka översvämningsnedsättning.

Den nya vattenförvaltningens krav

Enkelt uttryckt innebär införande av vattendirektivet framför allt en skärping gällande miljökrav i vatten som inte uppfyller målen och en strävan efter helhetssyn på hela avrinningsområdets behov av miljöförbättring och åtgärder.

I tillägg till miljöbolagens allmänna hänsynsregler gäller strängare regler för tillåtlighet av utsläpp om utsläpp kan riskera att en fastställd miljökvalitetsnorm inte kommer att uppfyllas. Därför bör vattendrag eller sjöar som kassats som måttlig status eller sämre, eller där riskbedömning visar att god status hotas, behandlas med större försiktighet. Särskild hänsyn bör tas avseende tillämpning av Miljöbolagets och PBL i dessa fall. Det gäller såväl planering som genomförande och tillsyn av dagvatten och andra verksamheter.

Vid bedömning av dagvattenutsläppens påverkan på recipient bör man särskilt förlita sig på näringsstatus, gäller framför allt Växjösjöarna, och kemisk status. Bedömning av näringsstatus grundar sig oftast på halter av totalfosfor, men det finns även bedömningar avseende växtplankton, makrofyter och fisk som i vissa fall är utslagsgivande i den sammanvägda bedömningen av ekologisk status. Angående översvämningsrisken bör även beaktas att flera större sjöar i Mörrumsån samt Östersjön hotas av översvämningsrisken vilket innebär att det i princip alltid är relevant att reducera fosforhalter i dagvatten i större delen av kommunens geografiska område.

Särskilt skyddsvärda recipenter

I tillägg till vattenförvaltningens minimikrav finns det känsliga recipienter som har en god status, men som på grund av känslighet kräver särskild hänsyn. Denna känslighet kan definieras utifrån särskilda nytta- och omdömesvärden, exempelvis vattentäkt och bad, höga naturvärden och/eller hydrologiska förhållanden, exempel liten tillrinning, liten och djup sjö som genom temperaturskiktning lättare
drabbas av syrebrist. Typexempel på sjöar i denna kategori är Skirsjön strax öster om Växjö tätort. Denna lilla klara sjö hyser ett gott bestånd av den ovanliga och rödlistade organismen sjöhjortron.

Det är viktigt att de principer som berörts här ovan beaktas även fortsättningsvis, eftersom en klassning strikt utifrån den nya vattenförvaltningens krav annars skulle nedprioritera skyddet av de särskilt skyddsvarda recipienterna

Särskilda områden att värna

Avseende båda de två främsta hotkategorierna, miljögifter och övergödning, är de kända problemen störst i sjökedjan Trummen och Bergundasjöarna. Samtidigt är dagvattnet en av de största föröreningskällorna i dessa sjöar, i Trummen antagligen den enskilt största. Det innebär att dagvattenföroringarnas relevans är som allra störst i detta lilla biflöde till Mörrumsån.

I kommunens övriga vatten gäller generellt att det finns en strävan att minska påverkan av näringsämnen då övergödning är ett problem i flera större sjöar i Mörrumsåns och Bräkneåns avrinningsområde, samt i Östersjön. I Lagans avrinningsområde, i trakten kring Lammhult, kan övergödningsfrågan anses vara mindre prioriterad, då sjöarna i systemet har en god status avseende näringsämnen samt att fosforutsläppen till Västerhavet är mindre omfattande. Avseende tungmetaller och miljögifter i dagvattnet bör utgångspunkten vara att det alltid finns skäliga åtgärder att vidta för att minska spridningen av dessa ämnen i naturen.

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Status i VISS</th>
<th>MKN i VISS</th>
<th>Känslig för</th>
<th>Övrigt</th>
<th>Känslighet kvalitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgunnen</td>
<td>Ekologisk status - God</td>
<td>God ekologisk status</td>
<td>Föroreningar</td>
<td>Kvalitetskrav enligt dricksvattenföreskrift</td>
<td>Känslig</td>
</tr>
<tr>
<td></td>
<td>Kemisk status - Uppnär ej god Kemisk status utan överallt överskrivande ämnen - God</td>
<td>God kemisk ytvattenstatus Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnsjön</td>
<td>Saknas</td>
<td>Saknas</td>
<td>Näringsämnen</td>
<td>Mycket känslig</td>
<td></td>
</tr>
<tr>
<td>Bergkvarasjön</td>
<td>Saknas</td>
<td>Saknas</td>
<td>Näringsämnen</td>
<td>Känslig</td>
<td></td>
</tr>
<tr>
<td>Drättingesjön</td>
<td>Ekologisk status - Måttlig Kemisk status - Uppnär ej god Kemisk status utan överallt överskrivande ämnen - Ej klassad</td>
<td>God ekologisk status 2027 God kemisk ytvattenstatus Mindre stränga krav PBDE och Hg</td>
<td>Näringsämnen Föroringar Tillfällig infiltration för dricksvattenproduktion</td>
<td>Känslig</td>
<td></td>
</tr>
</tbody>
</table>
| Helgasjön | Ekologisk status - Måttlig
Kemisk status - Uppnär ej god
Kemisk status utan överskridande ämnen - God | God ekologisk status 2021
God kemisk ytvenstatutus
Mindre stränga krav
PBDE och Hg | Näringsämnen | Känslig |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Helgasjön vid Evedal</td>
<td>Badvatten Evedal</td>
<td>Mycket känslig</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Innaren | Ekologisk status - God
Kemisk status - Uppnär ej god
Kemisk status utan överskridande ämnen - God | God ekologisk status
God kemisk ytvenstatutus
Mindre stränga krav
PBDE och Hg | Näringsämnen Föroreningar | Vattentäkt för Rottne/Brittatorp
Mindre känslig |
| Kalven | Saknas | Saknas | Recipient för renat avloppsvatten | Mindre känslig |
| Kyrksjön | Saknas | Saknas | | Mindre känslig |
| Lammen | Ekologisk status - God
Kemisk status - Uppnär ej god
Kemisk status utan överskridande ämnen - Ej klassad | God ekologisk status
God kemisk ytvenstatutus
Mindre stränga krav
PBDE och Hg | Förurning | Mindre känslig |
| Lynnen | | | Näringsämnen Föroreningar | Känslig |
| Norra Bergundasjön | Ekologisk status - Dålig
Kemisk status - Uppnär ej god
Kemisk status utan överskridande ämnen - Uppnär ej god | God ekologisk status 2027
God kemisk ytvenstatutus
Mindre stränga krav
PBDE och Hg
Tidsfrist Pb och Pb-föreningar 2021 | Näringsämnen Bly
Recipient för renat avloppsvatten
Mindre känslig |
<p>| Rinkabysjön | Saknas | Saknas | | |</p>
<table>
<thead>
<tr>
<th>Sjönamn</th>
<th>Ekologisk status</th>
<th>Kemisk status</th>
<th>Föroreningar</th>
<th>Opäverbakd sjö</th>
<th>Mycket känslig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stora Värmen</td>
<td>Dålig</td>
<td>Uppnår ej god</td>
<td></td>
<td>Vattentäkt för Lammhult</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kemisk status</td>
<td>Utan överskridande ämnen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uppnår ej god</td>
<td>God ekologisk status 2027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>God kemisk ytvattenstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tidsfrist Pb och Pb-föreningar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Södra Bergundasjön</td>
<td>Måttlig</td>
<td>Uppnår ej god</td>
<td></td>
<td></td>
<td>Mycket känslig</td>
</tr>
<tr>
<td></td>
<td>Kemisk status</td>
<td>Utan överskridande ämnen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God ekologisk status 2021</td>
<td>God kemisk ytvattenstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sörabysjön</td>
<td>God</td>
<td>Uppnår ej god</td>
<td></td>
<td>Recipient för renat avloppsvatten</td>
<td>Mindre känslig</td>
</tr>
<tr>
<td></td>
<td>Kemisk status</td>
<td>Utan överskridande ämnen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God ekologisk status 2021</td>
<td>God kemisk ytvattenstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toftasjön</td>
<td>God</td>
<td>Uppnår ej god</td>
<td></td>
<td>Natura 2000 Notteryd Habitatdirektivet</td>
<td>Känslig</td>
</tr>
<tr>
<td></td>
<td>Kemisk status</td>
<td>Utan överskridande ämnen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God ekologisk status</td>
<td>God kemisk ytvattenstatus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjö</td>
<td>Ekologisk status - God</td>
<td>Kemisk status - God</td>
<td>Kemisk status - Uppnär ej god</td>
<td>Kemisk status utan överskridande ämnen - Ej klassad</td>
<td>Försurning</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Torsjön</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God ekologisk status</td>
<td>God kemisk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God kemisk ytvattenstatus</td>
<td>Mindre stränga krav</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trummen</td>
<td>Ekologisk status - Ocksåföreningar</td>
<td>Kemisk status - Ocksåföreningar</td>
<td>Kemisk status - Uppnär ej god</td>
<td>Kemisk status utan överskridande ämnen - Uppnär ej god</td>
<td>Näringsämnen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God ekologisk status</td>
<td>God kemisk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God kemisk ytvattenstatus</td>
<td>Mindre stränga krav</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tävelssjön</td>
<td>Saknas</td>
<td>Saknas</td>
<td>Näringsämnen</td>
<td>Känslig</td>
<td></td>
</tr>
<tr>
<td>Vederslövssjön</td>
<td>Ekologisk status - Mättlig</td>
<td>Kemisk status - Mättlig</td>
<td>Kemisk status - Uppnär ej god</td>
<td>Kemisk status utan överskridande</td>
<td>Arsenik Bly</td>
</tr>
<tr>
<td></td>
<td>God ekologisk status</td>
<td>God kemisk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God kemisk ytvattenstatus</td>
<td>Mindre stränga krav</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Växjösjön</td>
<td>Ekologisk status - Ocksåföreningar</td>
<td>Kemisk status - Ocksåföreningar</td>
<td>Kemisk status - Uppnär ej god</td>
<td>Kemisk status utan överskridande</td>
<td>Näringsämnen</td>
</tr>
<tr>
<td></td>
<td>God ekologisk status</td>
<td>God kemisk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>God kemisk ytvattenstatus</td>
<td>Mindre stränga krav</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Årydsjön</td>
<td>Ekologisk status - God</td>
<td>Kemisk status - Uppnår ej god</td>
<td>Försurning</td>
<td>Mindre känslig</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Ekologisk status - God</td>
<td>Kemisk status - Uppnår ej god</td>
<td>Kemisk status - Mindre stränga krav PBDE och Hg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norra Örken</td>
<td>Ekologisk status - God</td>
<td>Kemisk status - Uppnår ej god</td>
<td>Försurning</td>
<td>Känslig</td>
<td></td>
</tr>
<tr>
<td>Södra Örken</td>
<td>Ekologisk status - God</td>
<td>Kemisk status - Uppnår ej god</td>
<td>Försurning</td>
<td>Mycket känslig</td>
<td></td>
</tr>
</tbody>
</table>

Tabell: Recipienternas känslighet.

Tolkning av tabell

Recipient – Aktuell recipient
Status i VISS – Statusbedömning i VISS (hämtad 2017)
MKN i VISS – Miljökvalitetsnorm i VISS (hämtad 2017)
Känslig för – Sammanvägd bedömning från VISS och Växjö kommun av parametrar orsakade av dagvatten som sjön är känslig för
Övrigt – Krav, direktiv mm som är viktigt att ta hänsyn till avseende dagvattnets kvalitet
Känslighet kvalitet – Bedömd av Växjö kommun utifrån ytterligare påverkan från dagvatten för att uppnå eller bevara fastställd miljökvalitetsnorm med utgångspunkt från riktlinjerna ovan.
Bilaga 5

Hantering av dag- och dräneringsvatten på tomtmark i Växjö

I följande text ges information om hur dag- och dräneringsvatten kan tas omhand för att minska risken för översvämning och skador på fastigheten samtidigt som det bidrar till en bättre miljö.

Kommunens dagvattenledningar är dimensionerade så att de ska klara alla normala regn. Att dimensionera ledningarna för exceptionella regn är i praktiken omöjligt vilket innebär att vatten tillfälligt kan dämma upp i ledningarna och nå marknivån. När det planeras att dränera om en husgrund eller läga om ledningar på tomtmark bör det samtidigt ses över hur ledningarna är anslutna till det kommunala avloppssystemet och i vilket skick de är.

Det är inte tillåtet för fastighetsägare att leda dag- eller dräneringsvatten till kommunens spillvattenledningsnät. Om det finns förbindelsepunkt för dagvatten kan det ledas till denna, men det kan också tas om hand på den egna tomtmarken.

I de flesta områden i vår kommun finns det duplikatsystem så att dag- och dräneringsvatten kan kopplas till en dagvattenledning (Se fig. 1). De fall där anslutning till dagvattenledning inte är möjlig beskrivs i slutet av informationstexten.

Att ta hand om dräneringsvatten

Dräneringsvatten avleds normalt tillsammans med regn- och smältvatten till en dagvattenservis som ansluter till kommunens dagvattenledning. Om husets dräneringsledning är direkt ansluten till dagvattenledningen i gatan (se figur 2), så kan dagvatten vid kraftiga regn dämma upp i fastighetens dräneringssystem och orsaka skador. Är dessutom husets stuprör kopplade till dräneringsledningen kan detta ytterligare påskynda och förstärka skaderisken.
Figur 2: Så här är ofta ett dräneringssystem kopplat på dagvattenbrunnen/-ledningen.

För att förhindra att dagvatten tränger in i dräneringen, om den ligger lägre än gatunivå, bör en pump installeras vid ombyggnad av dräneringssystemet så att dräneringsvattnet lyfts upp till marknivån och sedan rinner med självfall via en dagvattenbrunn till kommunens ledning (se fig. 3).

Alternativt kan dräneringsvattnet pumpas till en LOD-anläggning på tomten.

Figur 3: Så här bör ett dräneringssystem vara installerat och kopplat.

Många av dagens dräneringssystem för källare bygger på att källarväggen ska kunna "andas" och de har inget tätskikt direkt på väggen. För att de ska fungera måste vattnet alltid vara bortdränerat. Om ledningarna dämmer upp går vatten upp innanför tätskiktet och väggen blir fuktig eller börjar läcka in vatten med skador som följd.

Pumpning anses vara det säkraste sättet att undvika att dagvatten tränger in i dräneringssystemet. Pumpen bör vara försedd med larm för hög nivå.

Tidigare var det vanligt att ansluta källardränkeringen till spillvattenservisen (eftersom denna oftast är placerad djupare än dagvattenservisen). Detta är numera inte tillåtet. Även detta problem löses bäst genom att pumpa dräneringen till dagvattenservisen (Se fig. 3) eller till en LOD-anläggning på tomten.
När kommunen förbättrar sina ledningar i ett område eller om kommunen på annat sätt kommer på felaktiga dräneringsinstallationer kommer krav på bortkoppling att ställas. Det är också lämpligt att fastighetsägaren tänker på att göra en sådan omkoppling i samband med andra åtgärder på sin fastighet.

Att ta hand om dagvatten

Det är inte tillåtet att utan överenskommelse leda in vattnet på grannens tomt eller på kommunal mark
Det finns olika alternativ för att utforma en LOD-anläggning inom den egna fastigheten. Se förslag på beprövade metoder nedan.

Ränndalsplattor
Att ta hand om dagvatten från taket kan enkel göras genom att använda stuprör med utkastare och ränndalsplattor av betong. Ränndalsplattorna avleder regnvattnet till en lämplig grönyta för infiltration. För att inte riskera fuktskador på huskonstruktionen ska grönytan luta bort från huset ca 5 cm per meter. Vid källarhus bör rännan vara minst ca 3 m lång så att inte källarväggen och dräneringen belastas med onödigt mycket vatten.

Figur 4: Ränndalsplattor avleder regnvatten till grönyta.

Behållare för regnvatten
Ett andra alternativ är att låta stuprören mynna i en eller flera behållare istället för att de leds ned i avloppssystemet. Det insamlade vattnet kan sedan användas till att vattna planteringar eller andra grönytor på tomten.

41
En behållare som samlar upp regnvatten fylls relativt snabbt. Därför är det viktigt, att se till att vattnet kan ledas bort från husgrunden när behållaren är helt fylld.

Figur 5: Regnvattenbehållare samlar upp regnvatten från stuprören.

Stenkista
Ett tredje alternativ är att anlägga en stenkista bestående av sten eller makadam. Man kan också gräva ner så kallade dagvattenkassetter.

Dagvattnet passerar ner genom stupröret via ett lövrens och vidare i en rörledning till stenkistan placerad minst 3 m från huset. Stenkistan kan ha en begränsad livslängd. Vid större stenkistor kan det därför vara en fördel att ha en brunn med slamficka före stenkistan. Stenkistan behöver också ha någon form av bräddavlopp där vattnet kan ledas iväg för att inte orsaka skada på huset.

Figur 6: Regnvatten kan avledas till en stenkista.

Kapning av det gamla stuprörsavloppet
Var noggrann med proppningen av de gamla stuprörsavloppen vid kapning av stupröret så att det varken kan komma upp eller ned något i dem.
1. Ny stuprörsutkastare
2. Gamla stuprörsavloppet

Kapa det gamla stuprörsavloppet cirka 15 cm under mark.

Krama ihop en hård pappersboll, pressa ned den en bit i röret och håll i betong så att det svämmar över kanten.

Anslutning till dagvattenledning
I de fall det inte är möjligt att ta hand om dagvattnet lokalt på tomten ska dagvattnet ledas till en dagvattenbrunn med sandfång och sedan med självfall ledas vidare till kommunens dagvattenledning (se figur 7).

Boverkets rekommendationer är att dräneringssystemet ska förses med en pump, så att dagvattnet inte kan tränga in i dräneringssystemet (se figur 3).

Figur 7: Så ska en dränerings- och dagvattenanslutning till den kommunala ledningen se ut.

Spygatt – brunn utanför källargarage eller källartrapp

För att undvika detta kan du installera en pump och pumpa vattnet till dagvattenledningen eller om det är möjligt, leda det till en stenkista. Du bör även se till att hindra vatten från omgivande markområden att rinna fram till nerfarten/trappan. Ett alternativ för källartrappan kan vara att se till att det finns ett tak över källarnedgången och gjuta igen spygatten.

Spygatter i källartrappor och garagenerfarter får inte vara anslutna till spillvattensystemet. I vissa fall kan kommunen medge undantag om ytan är mycket begränsad och inte bedöms ställa till problem.
Ett rättkopplat hus

Nedan visas en bild på ett hus där man valt att ansluta dag- och dräneringsvatten till kommunens dagvattenledning i stället för till LOD-anläggning. Alla de olika ledningstyperna redovisas och är kopplade på rätt sätt (se figur 9). Vatten från en garagenerfart kan lämpligen kopplas till dräneringspumpstationen om den dimensioneras för detta.

![Figur 9: Ett rättkopplat hus.](image)

Förklaring:

___ Dricksvattenledningar
___ Spillvattenledningar
___ Dagvattenledningar
___ Dräneringsledningar

Täta servisledningar

Även om fastighetens ledningar är rätt kopplade kan de i vissa fall ställa till problem. Det är inte ovanligt att ledningarna med åren blir i så dåligt skick att dagvattenledningen läcker ut vatten som i marken rinner över till den lägre belägna spillvattenledningen.

Detta är naturligtvis inte tillåtet och om kommunen upptäcker sådana brister kan fastighetsägaren tvingas att lägga om sina ledningar. Därför är det viktigt att tänka på detta om begränsade åtgärder görs på de interna ledningarna. Då är det oftast ekonomiskt bäst att samtidigt åtgärda hela ledningsnätet på fastigheten.
Hantering av dag- och dräneringsvatten när dagvattenservis saknas

I andra samhällen kan enstaka gator/kvarter sakna dagvattenserviser. Även här är det inte tillåtet att släppa ut dag och dräneringsvatten till spillvattenservisen, även dessa fastigheters problem bör lösas med LOD.